Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.

نویسندگان

  • W N Lanzilotta
  • V D Parker
  • L C Seefeldt
چکیده

Nitrogenase-catalyzed substrate reduction reactions require electron transfer between two component proteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein, in a reaction that is coupled to the hydrolysis of MgATP. In the present work, electron transfer (Marcus) theory has been applied to nitrogenase electron transfer reactions to gain insights into possible roles for MgATP in this reaction. Evidence is presented indicating that an event associated with either MgATP binding or hydrolysis acts to gate electron transfer between the two component proteins. In addition, evidence is presented that the reaction mechanism can be fundamentally changed such that electron transfer becomes rate-limiting by the alteration of a single amino acid within the nitrogenase Fe protein (deletion of Leu 127, L127 Delta). These studies utilized the temperature dependence of intercomponent electron transfer within two different nitrogenase complexes: the wild-type nitrogenase complex that requires MgATP for electron transfer and the L127 Delta Fe protein-MoFe protein complex that does not require MgATP for electron transfer. It was found that the wild-type nitrogenase electron transfer reaction did not conform to Marcus theory, suggesting that an adiabatic event associated with MgATP interaction precedes electron transfer and is rate-limiting. Application of transition state theory provided activation parameters for this rate-limiting step. In contrast, electron transfer from the L127 Delta Fe protein variant to the MoFe protein (which does not require MgATP hydrolysis) was found to be described by Marcus theory, indicating that electron transfer was rate-limiting. Marcus parameters were determined for this reaction with a reorganization energy (lambda) of 2.4 eV, a coupling constant (HAB) of 0.9 cm-1, a free energy change (Delta G' degrees ) of -22.0 kJ/mol, and a donor-acceptor distance (r) of 14 A. These values are consistent with parameters deduced for electron transfer reactions in other protein-protein systems where electron transfer is rate-limiting. Finally, the electron transfer reaction within the L127 Delta Fe protein-MoFe protein complex was found to be reversible. These results are discussed in the context of models for how MgATP interactions might be coupled to electron transfer in nitrogenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nitrogenase from the facultative anaerobe

The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evolution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor ofMgATP in the MgATPinduced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K' = 20,UM was determined for MgADP. The release o...

متن کامل

An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein.

The MoFe protein of nitrogenase catalyzes the six-electron reduction of dinitrogen to ammonia. It has long been believed that this protein receives the multiple electrons it requires one at a time, from the [4Fe-4S]2+/+ couple of the Fe protein. Recently an all-ferrous [4Fe-4S]0 state of the Fe protein was demonstrated suggesting instead a series of two electron steps involving the [4Fe-4S]2+/0...

متن کامل

Studies of Protein Structure in Solution and Protein Folding Using Synchrotron Small-angle X-ray Scattering

Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and unde...

متن کامل

Trinity Hamilton

The metalloenzyme nitrogenase is utilized by microbial diazotrophs to accomplish the majority of biological nitrogen fixation. Many different forms of the enzyme nitrogenase are known to exist. They are categorized by the type of metal cluster providing the N2-binding site, which is also the active site of the enzyme. The nitrogenase best-characterized to date has an active site with the compos...

متن کامل

The mechanism of Klebsiella pneumomiae nitrogenase action Pre-steady-state kinetics of H2 fonnation

A comprehensive model for the mechanism of nitrogenase action is used to simulate pre-steady-state kinetic data for H2 evolution in the presence and in the absence of N2, obtained by using a rapid-quench technique with nitrogenase from Klebsiella pneumoniae. These simulations use independently determined rate constants that define the model in terms of the following partial reactions: component...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 1998